Search results for " 30H10"

showing 3 items of 3 documents

Hardy-Orlicz Spaces of conformal densities

2014

We define and prove characterizations of Hardy-Orlicz spaces of conformal densities.

Pure mathematicsQuantitative Biology::BiomoleculesMathematics::Functional AnalysisHardy spacesMathematics::Complex Variables010102 general mathematicsta111Mathematics::Classical Analysis and ODEsConformal mapHardy spaceMathematics::Spectral Theoryconformal densities01 natural sciencesHardy-Orliczsymbols.namesakeMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematicssymbols010307 mathematical physicsGeometry and Topology0101 mathematics30C35 (Primary) 30H10 (Secondary)MathematicsConformal Geometry and Dynamics
researchProduct

Hardy spaces and quasiconformal maps in the Heisenberg group

2023

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

Hardy spacesMathematics - Complex VariablesMetric Geometry (math.MG)quasiconformal mapsHeisenberg groupPrimary: 30L10 Secondary: 30C65 30H10Functional Analysis (math.FA)Mathematics - Functional AnalysiskvasikonformikuvauksetMathematics - Metric GeometryFOS: MathematicsHardyn avaruudetComplex Variables (math.CV)Carleson measuresAnalysis
researchProduct

Intrinsic Hardy–Orlicz spaces of conformal mappings

2014

We define a new type of Hardy-Orlicz spaces of conformal mappings on the unit disk where in place of the value |f(x)| we consider the intrinsic path distance between f(x) and f(0) in the image domain. We show that if the Orlicz function is doubling then these two spaces are actually the same, and we give an example when the intrinsic Hardy-Orlicz space is strictly smaller.

Image domainPure mathematicsMathematics::Functional AnalysisMathematics - Complex VariablesmathematicsGeneral Mathematicsta111Mathematics::Classical Analysis and ODEsconforma mappingsConformal mapFunction (mathematics)Type (model theory)Space (mathematics)Path distanceUnit diskHardy–Orlicz spacesFOS: MathematicsComplex Variables (math.CV)30C35 (Primary) 30H10 (Secondary)Value (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct